SOLUTION OF CERTAIN BOUNDARY PROBLEMS OF MATHEMATICAL PHYSICS BY THE COLLOCATION METHOD

A. I. IVANOV

Translation of "Resheniye Nekotorykh Krayevykh Zadach Matematicheskoy Kiziki Metodom Kollokatsii," Institute of Space Research, Academy of Sciences USSR, Moscow, Report Pr-98, 1972, 31 pages.
(NASA-TT-F-14371) SOLUTION OF CERTAIN

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION WASHINGTON, D.C. 20546 AUGUST 1972

SOLUTION OF CERTAIN BOUNDARY PROBLEMS OF MATHEMATICAL PHYSICS BY THE COLLOCATION METHOD

A. I. Ivanov

Abstract

Presented in this article is a very simple and effective means of solving a number of boundary problems of mathematical physics by the collocation method. Questions concerning existence, and convergence of approximate solutions found with this method are discussed in the work. Estimates of the speed of convergence of approximate solutions on the exact solution are included.

INTRODUCTION

The collocation method, or interpolation method, is mathematically simple /3* and requires no special preliminary information; at the same time it is an effective means of solving various problems in mathematical physics. This method is promising from the standpoint of computer technology, since it requires very little manual labor. Meanwhile much less attention has been devoted to it in the mathematical literature than to other methods.

The solution v of the differential equation describing some physical process whould be determined according to given functions f. Information about functions f derived from experiment is usually presented in tabular form. This is very convenient in terms of application of the collocation method. Furthermore the approximate solution found by the interpolation method is polynomial in terms of the corresponding variables, which is useful in theoretical analysis.

Questions of the existence, convergence and speed of conversions of approximate solutions in the case of boundary problems for the elliptical and parabolic

[^0]equations, stationary and non-stationary Navier-Stokes equation system of a viscous incompressible fluid are discussed in this article.

1. Interpolation method of solving boundary problems for elliptical equations.

We will examine the first boundary for the equation

$$
\begin{equation*}
\Delta_{\rho, \varphi,} u=\frac{1}{\rho} \frac{\partial}{\partial \rho}\left(\rho \frac{\partial u}{\partial \rho}\right)+\frac{1}{\rho^{2}} \frac{\partial^{2} u}{\partial \varphi}=f\left(\rho, \rho, \frac{\partial u}{\partial \rho}, \frac{\partial u}{\partial \rho}, u\right) \tag{1}
\end{equation*}
$$

in a circle Ω of radius R. Here ρ, ϕ are polar coordinates. At the boundary of the circle Ω

is satisfied.
The approximate solution of problem $(1,2)$ is sought in the form

$$
u_{n}(\rho, y)=\frac{1}{2 n+1} \sum_{m=0}^{2 n} a_{n}^{(n)}(\rho) \frac{\sin (2 n+1) \frac{y-y}{2}}{\sin \frac{3-y_{m}}{2}}
$$

The collocation method consists in the fact that the unknown functions

$$
a_{m}^{(n)}(\rho), m=0, \ldots, 2 n
$$

are determined from a system of $2 \mathrm{n}+1$ equations.

$$
\begin{gather*}
{\left[\Delta_{\rho, y} u_{n}-f\left(\rho, \rho_{2} \frac{\left.\partial u_{n}, \frac{\partial u_{n}}{\partial \rho}, u_{n}\right]_{y=y_{m}}^{\partial y},}{},\right.\right.} \tag{3}\\
u /_{\rho=R}=0, \tag{4}
\end{gather*}
$$

where

$$
y_{m}, m=0,1_{2}, \ldots, 2 n_{2}-
$$

are fixed numbers, called nodes of interpolation. We will assume

$$
y_{m}=\frac{2 m \pi}{2 n+1}, \quad n=0,1, \ldots, 2 n
$$

We shall study the problems of convergence and rate of convergence of the approximate solutions obtained by this method to the exact solution.

We shall assume that there exists a solution $\boldsymbol{u}^{\prime \prime}(\rho, y)$ problem (1,2) twice continuously differentiable in terms of (ρ, ϕ) in $\bar{\Omega}$.

The following assumptions are made: 1) the function $p\left(\rho, y, \frac{\partial u}{\partial}, \frac{\partial u}{\partial y}, u\right)$ is Holder-
 the range $\bar{V}=\left(\rho \rho, y, \frac{\partial}{\partial \rho}, \frac{\partial u}{\partial y}, u\right)$: now where $(\rho, y) \in \bar{\Omega}, \mid u-u^{u}(\rho, y) / \leqslant \eta_{p}, \frac{\partial u}{\partial \rho}-\frac{\partial u^{2}}{\partial \rho}(\rho, y) / \leqslant g_{s}, / \frac{\partial u}{\partial y}-\frac{\partial y}{\partial y}$ $\left.(\rho, y) \mid \leqslant q_{3}\right)$, are q_{1}, q_{2}, q_{3} constants; 2) The functions Fin $\left(n y ; \frac{\partial u}{\partial \rho}, \frac{\partial u}{\partial y}, u\right), f_{j}^{\prime}\left(\rho, y, \frac{\partial u}{\partial \rho}, \frac{\partial u}{\partial y}, u\right), f_{u}^{\prime}\left(\rho, y, \frac{\partial u}{\partial \rho}, \frac{\partial u}{\partial y}, u\right)$ are defined and continuous in range V; 3) The homogeneous problem

$$
\begin{aligned}
& +R_{u}^{\prime}\left(\rho, y, \frac{\partial u^{*}}{\partial \rho}(\rho, y), \frac{\partial u^{*}}{\partial y}(\rho, y), u^{*}(\rho, y y) u, \quad(\rho, y) \in \Omega,\right. \\
& \text { u/p=R }=0
\end{aligned}
$$

has only a zero solution.
Analysis of convergence is based on the results of the theory of projection methods [1]. We denote the following:

$$
\begin{gathered}
z^{*}(\rho, \varphi) \equiv \Delta_{\rho, y} \psi^{*}(\rho, y), \\
z_{n}(\rho, y)=\Delta_{\rho, y} \psi_{n}(\rho, y),
\end{gathered}
$$

In view of the assumptions relative to solution $u^{*}(\rho, \phi)$ the function
 is continuous in $\bar{\Omega}$.

We will introduce the following Banach spaces. $C(\bar{\Omega})$ is the space of the
 $u(\rho, \phi)$, is the space of functions $\bar{H}_{\uparrow+\delta}(\bar{\Omega})$ - , equal to zero when $\rho=R$, continuous along with $c \frac{\partial u}{\partial \rho}(\rho, y), \frac{\partial u}{\partial \varphi}(\rho, y)$ c with bounded standard $\|u\|_{A_{4}=\delta}(\bar{\Omega})$,

$$
\|u\|_{A_{\theta} \leq 5}(\bar{\delta})=|u|_{\delta}+\left|\frac{\partial u}{\partial g}\right|_{\delta}+\left|\frac{\partial u}{\partial y}\right|_{\delta},
$$

where

$$
\begin{aligned}
& \left|v / \delta=/ \partial\left\|_{0}+\langle z\rangle_{\gamma,} \quad\left|v \|_{0}=\max _{(\rho, y) \in \Omega}\right| \vartheta(\rho, y) \mid 1,\right.\right. \\
& \langle v\rangle_{\delta}=\int_{(\rho, \psi),(\rho ;, v) \in \bar{\Omega}} \frac{\left|z(\rho, y)-v\left(\rho ; y^{0}\right)\right|}{\left(\sqrt{\left(\rho-\rho^{0}\right)^{2}+\left(y-y^{0}\right)^{2}}\right)^{\delta}}, \\
& 0<\delta \leqslant 1 \text {. }
\end{aligned}
$$

$H_{\delta}(\bar{\Omega})$ - is the space of continuous functions with bounded standard
$\|u\|_{N_{\delta}(\bar{\Omega})}^{=\mid u)_{0}+\langle u\rangle_{\delta}, \quad 0<\delta \leqslant 1 .}$

We will assume that for $n, n=1,2, \ldots$, unique approximate solutions exist $u_{n}(\rho, \phi)$ with bounded standard $\left\|\left\|\|_{\beta_{1+8}}(\tilde{\Omega})^{.}\right.\right.$

Let us examine the following boundary problem:

$$
\begin{aligned}
\Delta_{\rho, \dot{F}} u & =z(\rho, y), \quad(\rho, y) \in \Omega \\
u / \rho=R & =0,
\end{aligned}
$$

where the function $C(\bar{\Omega})$ is a set of space $\bar{Z}(0, y)$.

Let us switch to Cartesian coordinates:

$$
\begin{aligned}
& \Delta_{x_{1}, x_{2}\left(x_{2}, x_{2}\right)=\frac{\partial^{x}}{\partial x_{1}^{x}}\left(x_{1}, x_{2}\right)+\frac{\partial^{2}}{\partial x_{2}^{2}}\left(x_{0}, x_{2}\right)=\tilde{x}\left(x_{0}, x_{2}\right), \quad\left(x_{0}, x_{2}\right) \in \Omega,}^{z / x_{2}^{2}+x_{2}^{2}=\frac{R^{2}}{=} 0,} .
\end{aligned}
$$

where

$$
\begin{aligned}
& \tilde{z}\left(x, x_{n}\right)=[z(\rho, y)]_{\rho=\sqrt{x_{2}+x_{2}^{2}}, y=\arctan x_{0},}^{z\left(x_{0}, x,\right)=[u(\rho, y)]} .
\end{aligned}
$$

$$
u\left(x_{1}, x_{2}\right)=[u(\rho, y)]_{\rho=\sqrt{x_{1}}+z_{2}^{2}}, y=\arctan \frac{x_{2}}{y} .
$$

It is clear that $\tilde{\Omega}\left(x_{1}, x_{3}\right)$ is a non-continuous function in $\bar{\Omega}$.
Boundary problem $\left(6^{1}\right)$, if $\tilde{z}\left(x_{n}, x_{\mu}\right) \in L_{p}(\Omega)$, has a unique generalized solution $\gamma\left(x_{1}, x_{2}\right) \in W_{p}^{(2)}(\Omega)$, and the estimate $\|\partial\|_{W_{p}^{(2)}(\Omega)} \leqslant q_{4}\|\tilde{z}\|_{x_{p}}(\Omega)$, is valid, where q_{4} is a constant, $p>1$ [2].

Definitions of spaces $\mathcal{L}_{p}(\Omega), W_{p}^{(2)}(\Omega)$ can be found, for instance, in [3]. 17
In view of the enclosure theorem [3] $\|z\|_{\pi_{1+5}(\Omega)} \leqslant q_{5}\|z\| W_{P}^{c 2}(\Omega)$, the enclosure operator is completely non-continuous when $\delta<\frac{\ell_{p}-\chi}{p}, q_{5}$, is a constant.
$\tilde{H}_{1+\delta}(\bar{\Omega})$ - is a space of functions $\overline{z\left(x_{1}, x_{2}\right),}$ equal to zero when $x_{1}^{2}+x_{2}^{2}=R_{3}^{\%}$ continuous along with $\frac{\partial z\left(x_{1}, x_{4}\right)}{\partial x_{1}} \frac{\partial z}{\partial x_{2}}\left(x_{1}, x_{2}\right)$ in $\bar{\Omega}$. with limited bound $\|r \cdot\|_{\tilde{\mu}_{1+5}}(\bar{\Omega})$. Bound $\mathbb{\|} \|_{\tilde{H}_{4+\delta}(\bar{\Omega})}$, like $\|u\|_{\mu_{1+\delta} \delta}(\bar{\Omega})$, is determined with substitutions of the symbols ρ, ϕ for x_{1}, x_{2}.

From the last estimate we have:

$$
\|u\|_{s_{1+8}(\Omega)} \leqslant q_{i}\|\partial\|_{A_{1+8}}(\bar{\Omega})^{5}
$$

$$
\begin{equation*}
\leqslant q_{s} q_{c}\|z\|_{W_{p}(1)}(\Omega) \mid q_{+} q_{s} q_{c}\|\tilde{x}\|_{L_{p}(\Omega)} \leqslant q_{4} q_{s} q_{0} q_{7}\|z\|_{c_{(}(\bar{\Omega})} \text {, } \tag{7}
\end{equation*}
$$

where q_{6}, q_{7} are constants.
In other words, there exists a linear, completely continuous operator A , acting from $C(\bar{\Omega})$ on $\bar{A}_{t+\delta}(\bar{\Omega})$ with bound $\|A\| \leqslant \xi_{0} q_{i} q_{\%}$.

Thus, if the functions $z_{n}(\rho, y)$. defined by relationships $5, n=1,2, \ldots$, belong to $C(\bar{\Omega})$, then for functions $u^{*}(\rho, y)-u_{n}(\rho, y), z^{*}(\rho, y)-\bar{x}_{n}(\rho, y)$ in view of (7), the inequalities

$$
\begin{equation*}
\left\|u_{n}-u^{*}\right\|_{A_{t+\delta}}(\bar{\Omega}) * q_{4} q_{5} q_{6} q_{7}\left\|x_{n}-2^{*}\right\|_{c(\bar{\Omega})} \tag{8}
\end{equation*}
$$

will be satisfied.
Since operator A is bounded we may take in space $C(\bar{\Omega})$ a sphere $\left\|z-z^{*}\right\|_{C(\bar{\Omega})} \sigma_{0}$ with radius σ_{0} so small that the functions $\left.u(\rho, \phi)=A Z(\rho, \phi), \| z-z^{\prime}\right\rangle(\bar{\Omega}) \leqslant \sigma_{s,}$ will satisfy the inequalities

We will proceed from (1), (2) to the task of finding the function $\mathbb{Z}^{*}(\rho, y)$: belonging to space $C(\bar{\Omega})$, satisfying the equation

$$
\begin{equation*}
z(\rho, y)=\rho\left(\rho, y, \frac{\partial}{\partial \rho} A z(\rho, y), \frac{\partial}{\partial y} A z(\rho, y), A z(\rho, y)\right)=P B z(\rho, y) . \tag{9}
\end{equation*}
$$

Here P is the linear bounded operator of enclosure of $H_{\delta}(\bar{\Omega})$ and $C(\bar{\Omega})$,

$$
B=f\left(\rho, y, \frac{\partial}{\partial \rho} A \ldots, \frac{\partial}{\partial y} A \ldots, A \ldots\right)
$$

is the operator acting from set $V\left\{Z ;\left\|Z-Z^{*}\right\| \|_{C(\bar{\Omega})} \leqslant \leqslant-\sigma_{0}\right\} \operatorname{cC}(\bar{\Omega})$ in space $H_{\delta}(\bar{\Omega})$. Operator B is completely continuous in set V in view of the perfect continuity of operator A and condition 1).

From (3), (4) of determning the approximate solution $u_{n}(\rho, \phi)$ we proceed to the problem of finding the function that satisfies the operator equation

$$
\begin{equation*}
p_{n}\left(x_{n}-8 z_{n}\right)=0 \tag{10}
\end{equation*}
$$

where P_{n} is the projector that places in correspondence each function $\Psi(\rho, \phi)$ continuous with respect to ϕ according to its trigonometric interpolation polynomial of the order n with nodes $\phi_{m}{ }^{(n)}, m=0.1 \ldots, 2 n$, in terms of the variable ϕ. However $\bar{z}_{n}(\rho, y)=\Delta_{\rho, y} u_{n}(\rho, y)$ - is a trigonometric polynomial of order $\leqslant-n$ in terms of ϕ. This means $P_{n} Z_{n}=Z_{n}$, and we proceed from (10) to the equation

$$
\begin{equation*}
z_{n}=P_{n} 8 z_{n} . \tag{11}
\end{equation*}
$$

Note that P_{n} is a linear b aided operator acting from $\mathrm{H}_{\delta}(\bar{\Omega})$ on $\mathrm{C}(\bar{\Omega})$.
According to the interpolation theorem [4], for any $Z \varepsilon H_{\delta}(\bar{\Omega})$ we shall have $\left\|\rho_{n} z-\rho_{z}\right\|_{(c(\vec{\Omega})} 0 \quad$ with $n \rightarrow+\infty$.

In view of condition (2) the operator PB is continuously Freshe-differentiable at the point $Z^{*}(\rho, \phi)$ in space $C(\bar{\Omega})$. We will prove that the homogeneous equation $h=P B^{\prime}\left(Z^{*}\right) h$ has only a rival solution. This equation is equivalent to finding the solution $u(\rho, \phi)$ of the problem

This problem, according to the proposition (3), has only a zero solution.
All conditions of the theorem of convergence of the approximate solutions on the exact [1, pp. 293-294] are satisfied. We shall present this theorem here.

Theorem. Let operator B be completely continuous on set U of Banach space $\complement(\bar{\Omega})$, and let equation $Z=P B_{Z}$ have the isolated solution $Z^{*} \varepsilon V$ with a zero component. Let the projectors P_{n} be bounded as operators from Banach space $\mathrm{H}_{\delta}(\bar{\Omega})$ to Banach space $\mathrm{C}(\bar{\Omega})$ and $\mathrm{P}_{\mathrm{n}} \rightarrow \mathrm{P}$ strongly with $\mathrm{n} \rightarrow+\infty$.

Then we find those n_{0}, σ_{1} for which with $n \geqslant n_{0}$ the equation $Z_{n}=P_{n} B Z_{n}$ has in sphere $\| z-z^{*} / / c(\bar{Z})=\sigma_{1}$ only one solution z_{n}, and all such solutions z_{n} for $n \rightarrow+\infty$ according to the bounds of space $C(\bar{\Omega})$ approach $Z^{*}(\rho, \phi)$. If operator B is Freshe-differentiable at point z^{*} and the homogeneous equation $h=P B^{\prime}\left(Z^{*}\right) h$ has only a zero solution ${ }^{1}$, then the estimate of convergence is valid:

$$
q_{8}\left\|\rho_{z^{*}}-\rho_{n} z^{*}\right\|_{c(\Omega)} \leqslant\left\|z_{n}-z^{*}\right\|_{c(\Omega)} \leqslant q_{9}\left\|\rho_{z^{*}}-\rho_{n} z^{*}\right\|_{c(\bar{\Omega})}, \text { where } q_{8}, q_{9} \text { are certain constants. }
$$

${ }^{1}$ Hence follows the isolation of z^{*} and the non zero value of the exponent.

If, moreover, operator B is continuously Freshe-differentiable at point z^{*}, then for sufficiently large n the solution Z_{n} of equation $Z_{n}=P_{n} B Z_{n}$ is unique in the sphere $\| z-\Sigma^{6} / c(\bar{n}) \leqslant \sigma_{2}$, of sufficiently small radius $\sigma_{2}, \quad \sigma_{z} \leqslant \sigma_{1}$.

In view of interpolation theorem [4], $\left\|z^{*}-p_{n} z^{*}\right\|_{c(\Omega)} \leqslant E_{n}\left(z^{*}(\rho, \varphi)\right)\left(q_{* 0}+q_{* 0} l_{n n}\right), \quad / 10$ where $E_{n}\left(z^{*}(\rho, y)\right)=\sup _{0 \leqslant p \leqslant R} E_{n}^{y}\left(z^{*}(\rho, y)\right), E_{n}^{y}\left(z^{*}(\rho, y)\right)$ - is the best uniform approximation of the function $Z^{*}(\rho, \phi)$ by trigonometric polynomials of order not exceeding n in terms of variable ϕ for fixed $\rho, 0 \leqslant \rho \leqslant R ; \quad q_{10}, q_{11}$ are absolute constants.

For any n solution $Z_{n}(\rho, \phi)$ of problem (11) corresponds to solution $U_{n}(\rho, \phi)$ of problem (3), (4) with bound $\left\|u_{n}\right\|_{A_{q+\varepsilon}(\bar{\Omega})}$. where $\left\|u_{n}-u^{*}\right\|_{A_{t+5}}(\bar{\Omega}) \leqslant q_{s} q_{s} q_{c} q_{x} \| z_{n}$ $-\lambda^{*} / c(\bar{\Omega})$.

Thus, the following is valid:
Theorem 1. Let conditions 1), 2), 3), be satisfied. Then we also find number n_{0}, σ_{2}, such that for $n \geqslant n_{0}$ the solution $U_{n}(\rho, \phi)$ of problem (3), and (4) belongs to sphere $\left\|u-u^{4}\right\|_{H_{1+\Sigma}}(\Omega \Omega)$

$$
\begin{aligned}
& \left\|u_{n}-u^{*}\right\|_{\mu_{r, \delta}}(\Omega) \leqslant q_{v} q_{s} q_{0} q_{v} q_{g} E_{n}\left(\Delta_{\rho, y} u^{*}(\rho, y)\right)\left(q_{n 0}+q_{n} \ln n\right)_{2} \\
& q_{i}\left\|\Delta_{\rho, \gamma} u^{*}-\rho_{n} \Delta_{B y} u^{*}\right\|_{C(\Omega)} \leqslant\left\|\Delta_{\rho, \varphi^{\prime}} u^{*}-\Delta_{\beta \varphi} u_{n}\right\|_{C(\bar{\Omega})} \leqslant \\
& \leqslant q_{9} E_{n}\left(\Delta_{\rho, y} u^{*}(p, y)\right)\left(q_{v 0}+q_{n} l_{n n}\right) .
\end{aligned}
$$

are satisfied.
Note 1. If the function $\Delta_{\rho, \phi} u^{*}(\rho, \phi)$ has a continuous derivative $\cdot \frac{\partial^{2}}{\partial y^{\prime}}\left[\Delta_{\rho, y^{\prime}}(\beta, y)\right], y=0,1,2, \ldots$, satisfying in terms of the argument ϕ the Holder condition with $2,0 \leq \nless \leqslant 1$. uniformly in terms of ρ, then according to the
 Holder constant of the function, $\frac{\partial^{f}}{\partial y^{\sigma}}\left[\Delta_{P, y^{4}}(\rho, y)\right], q_{13}$ is an absolute constant. Consequently we have the estimates

$$
\begin{aligned}
& \left\|u_{n}-u^{W}\right\|_{A_{1+\delta}}(\bar{\Omega})^{s} q_{s} q_{s} q_{s} q_{s} q_{s} q_{n 2} q_{n} \frac{(v+1)^{s+1}(s+1)!}{\left(\frac{2}{n-s}\right)^{\alpha}\left(q_{n+}+q_{n} q_{n}\right)} n_{n}^{s},
\end{aligned}
$$

The unknown functions $a_{m}^{(n)}(\rho), \rho_{m}^{(n)}(\rho), c_{m}^{(n)}(\rho), m=0,1, \ldots, 2 n$ ，according to the collocation method，are determined from a system $\not 2(2 n+1)$ of ordinary differential equations $\left[\nabla \Delta_{\rho, p^{2}} \vec{z}^{(n)}-\operatorname{deg}_{\rho, y}^{\prime} p^{(n)}-\vec{f}\right]_{\substack{y=y^{(n)} \\ \rho \in ⿴ ⿱ 冂 一 ⿰ 丨 丨 丁 心}}=(0,0)$
and relations

$$
\begin{align*}
& {\left[\operatorname{din}_{\rho, y} \bar{z}^{(n)}\right]_{\substack{y=y(n) \\
\rho \in \tilde{\Omega}}}=0 \text {, }} \tag{17}\\
& \left.\vec{z}^{(n)}\right|_{\substack{y=y_{j}(m)}}=(0,0), \quad m=0,1, \ldots, 2 n \text {, } \tag{18}\\
& \int_{J^{D}} p^{(m)} d s=0 . \tag{19}
\end{align*}
$$

The convergence of the collocation method depends partially on the choice of nodes of collocation $y_{m}^{(m)}, m=0,1, \ldots, 2 n$ ．

We will assume $\boldsymbol{y}_{m}^{(n)}=\frac{\frac{2 \pi m}{}}{2 n+1}, m=0,1, \ldots, 2 n$ ．
In analysing the convergence of the method we will assume that region Ω is a circle，i．e． $\left.\bar{\Omega}=(i \rho, y): 0 \leqslant R_{1} \leqslant \rho \leqslant R_{2}, \quad 0 \leqslant f<2 \pi\right)$ ．

The functions $z_{\rho}^{(n)}(\rho, Y), z_{\varphi}^{(n)}(\rho, y), \operatorname{din}_{\rho, y} \vec{z}^{(n)}(\rho, y)$ are trigonometric polynomials of an order not exceeding n in terms of variable $\boldsymbol{Y}, 0 \leqslant \boldsymbol{y}<2 \pi$ ．which have exactly 2 n roots．

Because of this and because of the fact that Ω is a circle，relations（17）， （18），（19）are valid for all $\phi \varepsilon(o, 2 n)$ ．

We will denote by $C(\bar{\Omega})$ the space of continuous Vector－functions $\vec{z}(\rho, y)=\left(z_{\rho}(\rho, y), z_{y}(\rho, y)\right)$ with bound $\|\vec{z}\|_{c(\vec{\Omega})(\rho, y) \in \bar{\Omega}}|\vec{z}(\rho, y)|$ ，where $|\vec{z}(\rho, y)|=\max \left\{\mid z_{\rho}(\rho\right.$, $y)_{,}\left(z z_{\rho}(\rho, y) \mid\right\} \cdot \ddot{H}_{1+5}(\bar{\Omega})$ is a space of Vector－functions $\vec{z}(\rho, y)==\left(z_{\rho}(\rho, y), z_{y}(\rho, y)\right)$ ， equal the zero vector on boundary S ，continuous along with $\frac{\partial z}{\dot{\rho} \rho}(\rho, \varphi), \frac{\partial \mathcal{Z}}{\rho}(\rho, y)$ on Ω ，in $\bar{\Omega}$ ，with bound $\|\vec{z}\|_{\dot{H}_{++\delta}}(\bar{\Omega})$ then $\|\vec{z}\|_{\xi_{s+6}(\bar{\Omega})}=|\vec{z}|_{\delta}+\left|\frac{\partial \vec{z}}{\partial \vec{\rho}}\right|_{\delta}+\left\lvert\, \frac{\partial \vec{z}}{\partial \vec{\rho}} \tilde{\Sigma}_{\delta}\right.$ ， where

$$
\begin{aligned}
& \int_{:}^{|\vec{u}|_{\delta}=|\vec{u}|_{0}+\left.\left\langle\vec{u}>_{\delta}, \quad\right| \vec{u}\right|_{0}=\max _{(\rho, y) \in \Omega}|\vec{u}(\rho, y)|,} \\
& \langle\vec{u}\rangle_{\delta}=\underset{(\rho, y), \rho^{\prime}\left(\rho_{0}, \varphi^{\varphi}\right) \in \bar{\Omega}}{ } \frac{| | \vec{u}(\rho, \varphi)\left|-\left|\vec{u}\left(\rho ; \varphi^{0}\right)\right|\right|}{\left(\sqrt{\left.\left(\rho-\rho^{0}\right)^{2}+\left(\varphi-\varphi^{0}\right)^{2}\right)^{\delta}} .\right.}
\end{aligned}
$$

We say that Vector-function $\bar{u}(\rho, y)=\overline{p_{p}}\left(u_{\rho}(\rho, y), u_{2} u_{3}(\rho, y)\right)$ satisfies in $\bar{\Omega}$ the Holder condition with the exponent $\delta, 0<\delta \leqslant 1$ and Holder constant $\left\langle\vec{u} \gamma_{\delta}\right.$, if $\langle\vec{u}\rangle_{\delta}\langle\infty$.
$\mathrm{H}_{\delta}(\bar{\Omega})$ is a space consisting of all Vector-functions $\overline{\widetilde{u}}(\stackrel{\rho}{\rho}, y)$ continuous in $\bar{\Omega}$, with finite bound $\|\vec{u}\|_{H_{\delta}(\Omega)}=|\vec{u}|_{0}+\langle\vec{u}\rangle_{\delta} \cdot \bar{L}_{\alpha}(\Omega), \kappa \equiv 1, \cdots$
is the Banach phase of Vector-functions with
$\vec{f}(\rho, y)=\left(f_{\rho}(p, y), f_{y}(\rho, y)\right)$ with $\| \vec{f}_{L_{N}}(\bar{\Omega})$

$$
\begin{aligned}
& =\max \left\{\left\|\dot{\rho}_{\rho}\right\|_{\alpha_{\kappa}}(\Omega),\left\|f_{\rho}\right\|_{L_{\mu}}(\Omega)\right\},\|z\|_{L_{k}}(\Omega) \overline{\overline{1}} \\
& =\left(\int_{0}^{2 \pi} \int_{\alpha_{1}}^{R_{2}} \mid z(\rho, y) \|_{\rho} \alpha_{\rho} d y\right)^{\frac{1}{\pi}} .
\end{aligned}
$$

We shall denote by $\tilde{\sim}_{\kappa}(\Omega), \kappa \geqslant 1$ the Banach space of Vector-functions
$\vec{\phi}\left(x_{1}, x_{A}\right)=\left(\Phi_{s_{1}}\left(x_{1}, x_{2}\right), \Phi_{x}\left(x_{x}, x_{2}\right)\right.$ with bound

$$
\begin{aligned}
& \|\vec{p}\|_{\tilde{\sim}_{\kappa}(\Omega)}=\max \left\{\left\|\Phi_{x},\right\|_{\tilde{\tau}_{*}}(\Omega),\left\|\Phi_{x_{i}}\right\|_{\tilde{\tau}_{k}(\Omega)}\right\},\|r \cdot\|{\tilde{\tilde{N}_{N}}}(\bar{\Omega}) \\
& =\left(\iint_{\Omega}\left|z\left(x_{0}, x_{2}\right)\right|^{n} d x_{1} d x_{1}\right)^{\frac{1}{k}} .
\end{aligned}
$$

We shall write problem (12)-(15) in the Cartesian coordinate system.

$$
\begin{aligned}
& \nu \Delta_{x_{1}, x_{2}} \vec{u}\left(x_{1}, x_{2}\right)=\operatorname{deg}_{x_{1}, x_{2}}^{\prime} \widetilde{P}\left(x_{1}, x_{2}\right)+\vec{\varphi}\left(x_{1}, x_{4}\right), \quad\left(x_{1}, x_{2}\right) \in \Omega, \\
& \operatorname{div}_{x_{1}, x_{a}}=0, \quad\left(x_{1}, x_{2}\right) \in \Omega \text {, } \\
& \left.\vec{u}\right|_{x_{2}^{2}+x_{2}^{2}==_{1}^{2}}(0,0) \text {, } \\
& \text { where } \vec{u}\left(x_{1}, x_{2}\right)=\left(u_{2}\left(x_{1}, x_{s}\right), u_{x_{1}}\left(x_{1}, x_{2}\right)\right) \text {, } \\
& \begin{aligned}
& u_{x_{1}}\left(x_{1}, x_{2}\right)=\left[v_{\rho}(\rho, y) \cos y-z_{\varphi}(\rho, y) \sin y\right]_{\rho=\sqrt{x_{x}^{2}+x_{2}^{2}}} \\
& \varphi= \\
& \operatorname{arc} \frac{z_{1}^{2}}{} \\
& \tan
\end{aligned} \\
& u_{x_{2}}\left(x_{1}, x_{2}\right)=\left[v_{\rho}(\rho, y) \sin y+z_{\rho}(\rho, y) \cos y\right] \\
& \begin{array}{c}
]_{\rho=} \sqrt{x^{2}+\dot{x}_{2}^{2}}, \\
y= \\
\operatorname{arc} \frac{x_{a}^{2}}{2}
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{r}
\tilde{P}\left(x_{1}, x_{2}\right)=[p(\rho, \varphi)]_{\rho}=\sqrt{x^{2}+x_{2}^{2}}, \\
y=\operatorname{arc}, x_{2} \\
\tan x, \frac{x_{1}}{x_{1}} \\
\vec{P}\left(x_{1}, x_{4}\right)=\left(\varphi_{x_{1}}\left(x_{1}, x_{1}\right), \varphi_{x_{2}}\left(x_{1}, x_{1}\right)\right),
\end{array} \\
& \Phi_{x_{1}}\left(x_{1}, x_{3}\right)=\left[f_{\rho}(\rho, y) \cos y-f_{y}(\rho, y) \sin y\right]_{\rho=\sqrt{x_{1}^{2}+x_{2}^{2}}}, \\
& \begin{aligned}
\varphi_{x_{2}}\left(x_{1}, x_{2}\right)=\left[f_{\rho}(\rho, y) \sin \varphi+f_{y}(\rho, \varphi) \cos y\right]_{\rho} & =\sqrt{x_{1}^{2}+x_{2}^{2}} \\
y & \operatorname{arc} \\
& \tan ^{2}
\end{aligned}
\end{aligned}
$$

This boundry problem if $\overrightarrow{\mathscr{P}}\left(x_{r}, x_{2}\right) \in \tilde{L}_{\mu}(\Omega), k>1$. has a unique generalized $/ 15$ solution $\vec{u}\left(x_{1}, x_{i}\right)$ deg $\tilde{x}_{i_{1}, x_{1}} \tilde{p}\left(x_{1}, x_{3}\right)$ and the estimate $\left\|\operatorname{grad}_{x_{1}, x_{2}} \tilde{p} / \tilde{L}_{\pi}(\Omega) \leqslant q_{14}\right\| \vec{\rho} / \tilde{\sim}_{\kappa}(\Omega)$, is satisfied, where q_{14} is some number depending on k [5].

In view of the assumption relative to the Vector-function $f(\rho, \rho)$, Vectorfunction $\vec{\phi}\left(x_{\infty}, x_{2}\right) \in \tilde{L}_{\kappa}(\Omega)$ for any k.

Therefore problem (12)-(15) has a unique solution and the estimate

$$
\begin{equation*}
\| \text { grad }_{p, y} p\left\|_{L_{k}}(\Omega) \leqslant q_{15}\right\| \vec{f} \|_{L_{\kappa}}(\Omega) \text {. } \tag{20}
\end{equation*}
$$

is satisfied, where q_{15} is some number depending on k.
Consequently $\operatorname{deg}{ }_{\rho, \rho} \rho(\rho, y)=M \vec{f}(\rho, \varphi)$. is satisfiable, where M is a linear bounded opeator acting from space $L_{k}(\Omega)$ in the same space with bound $\|M\| \leqslant \Omega_{15}$

Problem (16)-(19) can be represented in the following form:

$$
\begin{aligned}
& \lambda \Delta_{\rho, \gamma \rho} \vec{z}^{(n)}-\operatorname{deg}_{\rho, y} \rho^{(n)}=Q_{n} \vec{\rho}, \quad(\rho, y) \in \Omega, \quad(\rho, y) \in \Omega, \\
& \operatorname{dir}_{\rho, y} \vec{z}^{(n)}=0, \\
& \left.\vec{z}^{(n)}\right|_{\substack{\rho=R_{1} \\
\rho=R_{1}}}=(0,0),
\end{aligned}
$$

where Q_{n} is the projector that placeseach coordinate of Vector-function into correspondence with its trigonometric polynomial in terms of variable of order n nodes $\varphi_{m}^{(n)}, m=0,1, \ldots, 2 n$.

We will note that $\overline{\omega_{n} \vec{\rho}(\rho, Y) \in H_{\delta}(\bar{\Omega})}$ with any n in view of the assumption $/ 16$ relative to the vector function $\vec{f}(\rho, y)$. Therefore, using the same line of reasoning as above, we establish that problem (16)-(19) has a unique solution $\overrightarrow{2}^{(n)}(\rho, y)_{2} \operatorname{deg}_{\beta, y} p(\beta, y)$ and the estimate
is valid.
We introduce the following definition:

$$
\begin{array}{ll}
\vec{z}(\rho, y) \equiv \nu \Delta_{\rho, \varphi} \vec{z}, & (\rho, y) \in \bar{\Omega} \\
\vec{z}^{(n)}(\rho, y) \equiv \nu \Delta_{\rho, \varphi} \vec{z}^{(n)}, & (\rho, y) \in \vec{\Omega} . \tag{22}
\end{array}
$$

The boundry problem is

$$
\begin{gathered}
\overrightarrow{\Delta_{\rho, y}} \vec{z}=\vec{x}(\rho, y), \\
\vec{z} / \rho_{\substack{ \\
\rho=R_{2}}}=(0,0),
\end{gathered}
$$

$$
(\rho, y) \in \Omega
$$

$$
\begin{aligned}
& \rho_{F} R_{2} \\
& \text { has a unique ge }
\end{aligned}
$$

where $\vec{Z}(\rho, \varphi) \in L_{k}(\Omega)$ has a unique generalized solution $\vec{\imath}(\hat{\rho}, \varphi)$ with bound $\|\vec{z}\|_{A_{1+6}}(\vec{\Omega})$, and, as in Section 1 , the estimate

$$
\begin{equation*}
\|\vec{z}\|_{\mu_{1+\sigma}(\bar{\Omega})} \leqslant q_{1 \sigma}\|\vec{z}\|_{L_{\times}(\Omega)}, \tag{23}
\end{equation*}
$$

is valid, where q_{16} is some number depending on k, δ.
Considering relations (12)-(15), (16)-(19), (22) and equation $\operatorname{deg} \rho, \wp p=M \vec{f}$, we have the following expressions:

$$
\begin{array}{ll}
\overrightarrow{\vec{z}}(\rho, \varphi)=M \vec{p}(\rho, y)+\vec{f}(\rho, \varphi), & (\rho, \varphi) \in \bar{\Omega} \\
\vec{z}^{(n)}(\rho ; \varphi)=M \varphi_{n} \vec{p}(\rho, \varphi)+\bigcup_{n} \vec{p}(\rho, y), & (\rho, \varphi) \in \bar{\Omega}
\end{array}
$$

We shall estimate $\left\|\overrightarrow{\boldsymbol{x}}-\vec{z}^{(n)}\right\|_{\ell_{\kappa}}(\Omega)$ In view of inequality

$$
\begin{equation*}
\left\|\vec{z}-\vec{q}^{(n)}\right\|_{l_{n}(\Omega)} \leqslant\left(q_{15}+1\right)\left\|\vec{p}-Q_{n} \vec{f}\right\|_{l_{x}}(\Omega) . \tag{24}
\end{equation*}
$$

$$
\begin{align*}
& \left\|\operatorname{deg}_{3, \infty} P^{(m)}\right\|_{l_{K}(\Omega)} \leqslant q_{15}\left\|\psi_{n} \vec{p}\right\|_{l_{N}(\Omega)} \text {, } \\
& H \operatorname{deg}_{\rho, y} \rho^{(n)}-\operatorname{deg}_{\rho, y P} \rho\left\|_{L_{k}(\Omega)} \leqslant q_{N s}\right\| \vec{f}-\psi_{n} \vec{f} \|_{L_{n}}(\Omega) \text {. } \tag{21}
\end{align*}
$$

Since $\vec{P}(\rho, \varphi) \in H_{\delta}(\bar{\Omega})$, then according to the Berstein theorem [4]

$$
\begin{equation*}
\left\|\vec{\rho}-Q_{n} \vec{f}\right\|_{c(\bar{\Omega})} \leqslant E_{n}(\vec{\rho}(\rho, y))\left(q_{10}+q_{n} \ln n\right) \tag{25}
\end{equation*}
$$

where $E_{n}(\vec{f}(\rho, \varphi))=$ mex $\left\{E_{\mathrm{K}}\left(\tilde{F}_{a}(\rho, \varphi)\right), E_{n}\left(\hat{f}_{\rho}(\rho, y)\right)\right.$ Expressions
$E_{n}\left(f_{\rho}(\rho, \varphi)\right), E_{n}(f \rho(\rho, y))$ are determined in this manner in Section l. In view of note 1 En $\left.(\hat{f}(\rho, y)) \leqslant q_{m} \quad \frac{z}{n}\right)^{0}$ where q_{17} is a constant.

The inequality

$$
\begin{equation*}
\left\|\vec{f}-\psi_{n} \vec{f}\right\|_{L_{k}(\Omega)} \leqslant \dot{q}_{18}\left\|\vec{p}-\psi_{n} \vec{p}\right\|_{C(\bar{\Omega}) ?} \tag{26}
\end{equation*}
$$

is valid, where q_{18} is an absolute constant.
From inequalities (23), (25), (26) we derive

$$
\| \vec{z}-\vec{b}_{H_{1+\delta}^{(n)} \|_{0}(\vec{\Omega})} \leq q_{10} q_{18} E_{n}(\vec{f}(\rho, \varphi))\left(q_{10}+q_{n} \ln _{n}\right)
$$

Thus the following theorem is valid:
Theorem 2. If vector function $\vec{\rho}(\rho, \varphi) \in H_{\delta}(\bar{\Omega})$ and range $\left.\bar{\Omega}=(i \rho, \varphi): \quad 0 \leqslant R_{1} \leqslant \rho \leqslant R_{2}, \rho \leqslant \varphi<2 \pi\right)$, then the approximate solutions $\vec{v}^{(n)}(\rho, \varphi)$, deg $\rho, \varphi \rho^{(n)}(\rho, \varphi)$ bound by the collocation method, converge on the exact solution $\vec{\gamma}(\rho, \mathcal{Y})$, deg $\rho, \gamma \rho(\rho, y)$ with the following estimated rate of convergence:

$$
\begin{aligned}
& \left\|\tilde{i}-\tilde{z}^{(n)}\right\|_{\mu_{1+\delta}}(\bar{\Omega}) \leqslant q_{10} q_{n n} q_{n+}\left(q_{1+}+1\right)\left(q_{n+}+q_{n} \ln n\right)\left(\frac{2}{n}\right)^{\delta} \text {, } \\
& \left\|\nu \Delta_{\rho, \varphi} \vec{\sigma}-\nabla \Delta_{\rho, \varphi} \vec{i}^{(n)}\right\|_{\alpha_{K}}(\Omega) \leqslant q_{\eta>} q_{r 8}\left(q_{15}+1\right)\left(q_{10}+q_{r r} e_{n n}\right)\left(\frac{2}{n}\right)_{,}^{\delta}
\end{aligned}
$$

Note 4. The results of this section pertain to the case

$$
\begin{aligned}
& \lambda \Delta_{\rho, y} \vec{z}-\left.d \operatorname{deg}\right|_{\rho, y} \rho=\vec{f}(\rho, y), \quad 0 \leqslant R_{1}<\rho<R_{2}, 0 \leqslant \varphi<2 \pi, \\
& d i_{\rho, y} \vec{z}=0, \quad 0 \leqslant R_{1}<\rho<R_{2}, \quad \rho \leqslant \varphi<2 \pi, \\
& \vec{z} / \rho_{\rho=R_{2}}=(0,0), \\
& \rho=R_{1}
\end{aligned}
$$

Here the vector function $\vec{\beta}(\rho, \gamma)$ has components that satisfy the Holder condition in terms of (ρ, ϕ) in the range $\bar{\Omega}=\left((\rho, \varphi) ; \rho \leqslant R_{1} \leqslant \rho \leqslant R_{z}, \quad \rho \leqslant \varphi<2 \pi\right)$.
3. The collocation method for quasilinear second-order parabolic equations.

We shall consider the first homogeneous boundary problem for a parabolic equation in the range $P_{T}=(0, \pi) n(0, T]$

$$
\begin{align*}
& \frac{\partial u}{\partial t}-L . u=P\left(x, t, u, \frac{\partial u}{\partial x}\right), \quad x \in(0, \pi), t \in(0, T], \\
& \text { rxe } L u=a_{1}(t) \frac{\partial^{2} u}{\partial x^{3}}+a_{2}(t) u, \tag{27}
\end{align*}
$$

where

$$
\begin{align*}
& u(x, 0)=0, \quad x \in(0, \pi), \tag{28}\\
& u(0, t)=u(\pi, t)=0, \quad t \in[0, T] . \tag{29}
\end{align*}
$$

We shall assume: 1) In the clnsed range $\bar{Q}_{T} \quad a_{1}(t) \geqslant \varphi_{\theta}>0$ is satisfied where q_{19} is a constant;
2) The coefficients of operator L are Holder-continuous with exponent $\delta, \quad \delta \varepsilon(0.1)$, in $\overline{\mathrm{Q}}_{\mathrm{T}}$:
3) The function $a_{1}(t)$ is Lipshits-continuous uniformly on $(0, T)$.

We will assume that there exist the solution $u^{*}(x, t)$ of problem (1), (2), 119 (3), twice continuously diffentiable in terms of x and continuously differentiable in terms of t in \bar{Q}_{T}.

The following limitations are placed on the function $f\left(x, t, u, \frac{\partial u}{\partial x}\right)$
4) The function $f\left(x, t, u, \frac{\partial u}{\partial x}\right)$ is Holder-continuous with exponent $\delta, 0<\delta \leq 1$, relative to (x, t) uniformly in terms of $\left(u, \frac{\partial u}{\partial x}\right)$ in range $G=\left(\left(x, t, u, \frac{\partial u}{\partial x}\right)\right.$: $\left.(x, t) \in \bar{\varphi}_{T}, / u-\left|-u^{*}(x, t)\right| \leqslant q_{20}, \frac{\partial u}{\partial x}-\frac{\partial u^{*}}{\partial x}(x, t) \nmid \leqslant g_{20}\right)$, now where q_{20} is some fixed number:
5) The functions $f^{\prime} f_{\partial u}^{\prime}\left(x, t, u, \frac{\partial u}{\partial x}\right)_{2}^{\prime} f_{u}^{\prime}\left(x, t, u, \frac{\partial u}{\partial x}\right)$ are defined and continuous in region G;

$$
\begin{aligned}
& \text { 6) })\left(0, t, 0, \frac{\partial u}{\partial x}\right)=f\left(w_{0}, t, 0, \frac{\partial}{\partial x}\right)=0 \mathrm{mpm} \quad t \in[0, J], / \frac{\partial u}{\partial x}- \\
& -\frac{\partial u^{*}(x, t)}{\partial \pi}
\end{aligned}
$$

We will note that conditions 1), 2), 3), and 6) insure a solution $u^{*}(x, t)$ with the required differential properties and sufficiently small T if the function $f\left(x, t, \frac{d u}{d x}, u\right)$ is Holder-continuous in bounded subsets of the set $\left(\left(x, t, u, \frac{\partial u}{\partial x}\right) ;(x, t) \in \bar{\partial}_{T},-\infty<u \ll+\infty,-\infty\right.$ रे $\left.\frac{\partial u}{\partial x}<+\infty\right)$

$$
[6, \mathrm{p}, 256]
$$

If, however, we add to the conditions s e requirements for the increase of the function $\overline{f\left(x, t, u, \frac{\partial u}{\partial x}\right)}$ in terms of the variables $\overline{u, \frac{\partial u}{\partial x}}$ exists for any T.

We shall proceed to the approximate solution by the collocation method.
We shall seek the approximate solution in the form

$$
u_{n}(x, t)=\sum_{x=1}^{n} c_{k n}(t) \sin x \bar{x} .
$$

The unknown functions $\bar{c}_{x n}(t), k=1, \ldots, n$, according to the collocation method, are determined from the condition that equation (27) be satisfied in a given system of points $x_{k n} \in[0, \pi], k=1, \ldots, n$, i.e., with a system of n ordinary first order differential equations

$$
\begin{align*}
& {\left[\left(\frac{\partial}{\partial t}-L\right) u_{n}-f\right]_{x=x_{n n}}=0,} \tag{30}\\
& x=1, \ldots, n
\end{align*}
$$

for $t \in(0, T]$, with initial conditions

$$
\begin{equation*}
c_{k n}(0)=0, \quad k=1, \ldots, n . \tag{31}
\end{equation*}
$$

Note that for $u_{n}(x, t)$ the initial condition (28) and boundary conditions (29) will be satisfied.

As the points of interpolation $x_{k n}$ we take equidistant points, i.e.,

$$
x_{k n}=\frac{2 \pi \pi}{2 n+1}, k=1, \ldots, n
$$

The question of the solubility of system (30) and (31) and of the conver, sions of approximate solutions $u_{n}(x, t)$ to the exact solution $u^{*}(x, t)$ is answered with the aid of the theory of projection methods [1].

Let

$$
\begin{align*}
& z^{*}(x, t) \equiv \frac{\partial u^{*}}{\partial t}(x, t)-L u^{*}(x, t), \quad(x, t) \in \bar{Q}_{T}, \tag{32}\\
& z_{n}(x, t) \equiv \frac{\partial u_{n}}{\partial t}(x, t)-L u_{n}(x, t), \quad(x, t) \in \bar{Q}_{r} . \tag{33}
\end{align*}
$$

In view of assumptions relative to solution $u^{*}(x, t)$ the function $Z^{*}(x, t)$ is a continuous function in $\overline{\mathrm{Q}}_{\mathrm{T}}$.

It is easy to see that the functions $Z_{n}(x, t)$ are equal to zero when $\mathrm{t}=0, \mathrm{x}=0, \mathrm{x}=\pi$.

Let us introduce the following Banach spaces. The space $\tilde{C}\left(\bar{Q}_{T}\right)$ is the space of functions $Z(x, t)$, that are continuous in Q_{T} and equal to zero when $\mathrm{x}=0, \mathrm{x}=\pi, \mathrm{t}=0$ with bound $\|z\|_{\widetilde{C}\left(\bar{\psi}_{T}\right)}=\max _{(x, t) \in \overline{\bar{Q}_{T}}}|z(x, t)|$.

The space $\stackrel{\stackrel{\circ}{H}}{1+\delta}\left(\overline{\bar{Q}_{r}}\right)$ - is the space of functions $u(x, t)$, equal to zero when $x=0, x=\pi, t \in[0, T] ; x \in(0, \pi), t=0$, continuous with $\frac{\partial u}{\partial x}(x, t)$, with bound

$$
\|u\|_{\dot{H}_{i+\delta}\left(\bar{Q}_{T}\right)}=|u|_{\delta}+\left|\frac{\partial u}{\partial x}\right|_{\delta}
$$

where

$$
\begin{aligned}
& \left|z /_{\delta}=|z|_{0}+\langle z\rangle_{\delta}, \quad\right| z /=\max _{(x, t) \in \bar{\varphi}_{T}}|z(x, t)|, \\
& \langle z\rangle_{\delta}=\sup _{(x, t)_{,}\left(x^{0}, t^{0}\right) \in \bar{\varphi}_{T}} \frac{\left|z(x, t)-i\left(x^{0}, t^{0}\right)\right|}{\left(\left|x-x^{0}\right|^{2}+\mid t-t^{0}\right)^{\frac{\delta}{2}}} .
\end{aligned}
$$

We shall examine in space $\tilde{C}\left(\bar{Q}_{T}\right)$ in linear variety $\tilde{C}\left(\bar{Q}_{T}\right)$ of functions $Z(x, t)$, satisfying the Holder condition with exponent condition $\delta_{0}, \delta_{0},<\delta$, in set Q_{T}. This set $\widetilde{C}\left(\bar{Q}_{T}\right)$ is everywhere continuous in space $\tilde{C}\left(\bar{Q}_{T}\right)$.

The boundary problem is

$$
\begin{array}{cr}
\frac{\partial u}{\partial t}-L u=z(x, t), & (x, t) \in \varphi_{r}, \\
u(x, 0)=0, & x \in(0, \pi), \\
u(0, t)=u(\pi, t)=0, & t \in[0, r],
\end{array}
$$

if the function $F(x, t) \in \widetilde{\widetilde{C}}\left(Q_{T}\right)$, with conditions 1), 2), 3), satisfied, has a unique classical solution $u(x, t)$ then

$$
\begin{equation*}
\|u\|_{A_{1+\delta}\left(\overline{(\bar{L}}_{T}\right)} \leqslant q_{2+}\|z\|_{\tau\left(\bar{\varphi}_{T}\right)}, \tag{34}
\end{equation*}
$$

where q_{21} is a constant [6].
In other words, we have determined a linear bounded operator D, acting from $\overline{\mathcal{C}}\left(\overline{\mathrm{Q}}_{\mathrm{T}}\right)$ in $\stackrel{\ddot{H}}{*+\delta}^{\left(\bar{Q}_{2}\right)}$ with bound $\overline{\|D\|} \leqslant q_{2 \uparrow}$. Since $\overline{\mathrm{C}}\left(\overline{\mathrm{Q}}_{\mathrm{T}}\right)$ is everywhere continuous
$\overline{\widetilde{C}}\left(\bar{Q}_{T}\right)$, operator D can be expanded over an entire space $\overline{\widetilde{C}}\left(\bar{Q}_{T}\right)$ with the same bound.

Thus, if the functions $z_{n}(x, t) \in \widetilde{C}\left(\bar{V}_{\Gamma}\right), n=1_{2}, \ldots$, for the function
$u^{*}(x, t)-u_{n}(x, t), z^{*}(x, t)-2_{n}(x, t)$ in view of (34), the inequalities

$$
\begin{align*}
& \left\|u_{n}-u^{*}\right\|_{A_{1+\delta}}\left(\overline{Q_{7}}\right) \\
& n=1,2, \ldots \tag{35}
\end{align*}
$$

will be satisfied.
We shall use $\dot{H}_{S}\left(\bar{\varphi}_{T}\right)$ to denote a Banach space of function $u(x, t)$ equal to zero when $x=0, x=\pi, t \in[0, T]$ and satisfying the Holder condition in \bar{Q}_{T} with $\delta_{0}, 0<\delta_{0} \leqslant 1$. The bound $/ u \|_{A_{\delta_{0}}}\left(\bar{Q}_{r}\right)$ is defined by the relationship

Since operator D is bounded we can take in space $\tilde{C}\left(\bar{Q}_{T}\right)$ the sphere $\left\|z-z^{*}\right\| 己\left(\bar{\varphi}_{r}\right) \leqslant \sigma_{3}$ of radius δ_{3} so small that the functions $u(x, t)=D Z(x, t)$ $\left\|z-z^{*}\right\| \widetilde{c}(\bar{p}) \leqslant \sigma_{3}$ will satisfy the inequalities:

$$
\left|u-u^{*}(r, t)\right| \leqslant q_{2 \theta}, / \frac{\partial u}{\partial x}-\frac{\partial u^{*}(x, t) \mid \leqslant q_{20}}{\partial x} ;(x, t) \in \bar{Q}_{T} .
$$

We proceed from problem (27)-(29) to that of finding the function $Z^{*}(x, t)$, belonging to space $\widetilde{C}\left(\bar{Q}_{T}\right)$, satisfying the condition

$$
\begin{equation*}
z(x, t)=K f\left(x, t, D_{2}(x, t), \frac{\partial}{\partial x} \partial z(x, t)\right)=K N z(x, t) . \tag{36}
\end{equation*}
$$

Here K is the linear bounded operator of enclosure of $\vec{H}_{\delta_{S}}\left(\bar{Q}_{T}\right)$ in $\tilde{C}\left(\bar{Q}_{T}\right)$,
 $\mathcal{C}(\bar{Q})_{t}$ in space $\bar{H}_{\delta_{0}}\left(\bar{Q}_{T}\right)$, where $\delta_{0}<\delta$.

The operator changes functions from the set $Z \subset \widetilde{C}\left(\overline{Q_{n}}\right)$ into function belonging to $\bar{H}_{\delta}\left(\bar{\varphi}_{\gamma}\right)$, since operator D acts from $\mathcal{C}\left(\bar{Q}_{T}\right)$ in $\dot{H}_{1+\delta}\left(\bar{\varphi}_{\gamma}\right)$ and the function $f\left(x, t, u_{i} \frac{\partial u}{\partial}\right)$ satisfies condition 4). Space $\bar{H}_{\delta}\left(\bar{Q}_{\gamma}\right)$ fits compactly $\quad / 23$ in space $\bar{H}_{\delta_{0}}\left(\bar{\varphi}_{r}\right)$, consequently operator N is perfectly continuous.

We will note that $z^{*} \in \widetilde{C}\left(\bar{\zeta}_{T}\right)$, follows from $z^{n} \in \widetilde{C}\left(\bar{\phi}_{T}\right), z^{*}=K N z^{*}$ since KN changes from set $\bar{Z} \subset \subset \bar{C}\left(\bar{Q}_{T}\right)$ to $\vec{A}_{\delta_{0}}\left(\bar{प}_{T}\right) \subseteq \overline{\widetilde{C}}\left(\overline{\mathcal{Q}}_{T}\right)$.

Consequently, if $u^{*}(x, t)$ is a solution to (27)-(29), twice continuously differentiable in terms of x, continuously differentiable in terms of t in \bar{Q}_{T}, then $z^{*}(x, t) \equiv \frac{\partial u^{*}(x, t)-\left\langle u^{*}(x, t)\right.}{\partial \vec{t}}$ is the solution of problem (36), $z^{*}(x, t) \in \tilde{C}\left(\overline{c_{2}}\right)$ and conversely if $Z^{*}(x, t)$ is the solution of equation (36), the function $\mathrm{u}^{*}(\mathrm{x}, \mathrm{t})$ found from boundary prob1em

$$
\begin{array}{ll}
\frac{\partial u}{\partial t}-L u=z^{*}(x, t), & (x, t) \in \bar{\psi}_{T}, \\
k(x, 0)=0, & x \in(0, \pi), \\
u(0, t)=u(\pi, t)=0, & t \in[0, \tau],
\end{array}
$$

will be twice continuously differentiable in terms of x, continuously differentiable in terms of t in $\overline{\mathrm{Q}}_{\mathrm{T}}$ and will be the solution of problem (27)-(29).

From problem (30), (31) of determining the approximate solution of $u_{n}(x, t)$ we will proceed to the problem of finding the function that satisfies the operator equation

$$
\begin{equation*}
K_{n}\left(z_{n}-P\left(x, t, D z_{n}, \frac{\partial}{\partial x} D z_{n}\right)\right)=0, \tag{37}
\end{equation*}
$$

where K_{n} is the porjector that places each continuous function $\psi(x, t)$ to correspond with its interpolation trigonometric polynomial of order of n with node $x_{\pi n}, r=1, \ldots, n$. However $\mathbf{z}_{n}(x, t)=\frac{\partial u_{n}(x, t)-L u_{p}(x, t)-\text { is a polynomial of }}{\partial t}$ order not greater then n in terms of argument x, and this means $K Z_{n}=Z_{n}$, and from equation (37) we proceed to the equation

$$
\begin{equation*}
z_{n}=K_{n} f\left(x, t, D z_{n}, \frac{\partial}{\partial x} D q_{n}\right)=K_{n} N z_{n} . \tag{38}
\end{equation*}
$$

Linear bounded operator K_{n} acts from $\bar{H}_{\delta_{f}}\left(\bar{\varphi}_{T}\right)$ to $\widetilde{C}\left(\bar{Q}_{T}\right)$. Since operator
 $z_{n}^{\prime} \in \tilde{C}\left(\bar{P}_{r}\right), z_{n}^{\prime}=k_{n} N_{2}^{\prime}$.

From this we derive the relationships of problems (30), (31) and (38), analogous to that of problem (27)-(29) and (36).

In view of interpolation theorem [4] for any $Z \in \dot{H}_{\delta_{0}}\left(\bar{\sigma}_{T}\right)$. we have $\# K_{n} \overrightarrow{-K} \mathbb{K}_{\overparen{C}\left(\overline{D_{2}}\right)}{ }^{0}$ for $\overrightarrow{n \rightarrow+\infty}$.

In view of conditions 5) operator KN is continuously Freshe-differentiable at the point $Z^{*}(x, t)$ in space $\widetilde{C}\left(\bar{Q}_{T}\right)$.

We will prove that the homogeneous equation $h=K N^{\prime}\left(z^{*}\right) h$ has only a trivial solution. If $h \in \bar{C}\left(\bar{D}_{R}\right)$, then equation $h=K N^{*}\left(a^{*}\right) h$ is equivalent to the boundary problem

$$
\begin{array}{ll}
\frac{\partial u}{\partial t}-L u=f_{u}^{\prime}\left(x, t, u^{\prime \prime}(x, t), \frac{\partial v^{\prime}}{\partial f^{\prime}}(x, t)\right) u \rightarrow & \\
+f_{\frac{u}{x}}^{\prime}\left(x, t, u^{*}(x, t), \frac{\partial u^{*}}{\partial x}(x, t)\right) \frac{\partial u}{\partial x}, & (x, t) \in Q_{T} ; \\
u(x, 0)=0, x \in(0, \pi) ; \quad u(0, t)=u(\pi, t)=0, & t \in[0, T] .
\end{array}
$$

This homogeneous problem has only a zero solution. If $h_{1} \in \mathcal{C}\left(\overline{(}_{7}\right), h_{7}=K N^{\prime}\left(z^{*}\right) h_{2}$, is satisfied it is essential that $\vec{h}_{2} \in \widetilde{C}\left(\bar{\varphi}_{7}\right)$. Hence, $h_{1}=0$.

Uner the conditions stipulated in this section the theorem concerning the convergence of approximate solutions to the exact solutions is applicable [1, pp. 293-294].

In view of this theorem we also find numbers n_{7}, σ_{4}, such that when $n \geqslant n_{1}$ there is a unique solution $Z_{n}(x, t)$ of equation (38) in the sphere $\left\|/ z-z^{*}\right\| / \tilde{\varepsilon}\left(\bar{Q}_{x}\right) \leqslant \sigma_{4}$ all such approximate solutions $Z_{n}(s, t)$ converge on $Z^{*}(x, t)$ in the bound of space $\tilde{C}\left(\bar{Q}_{T}\right)$ and the esttimate of convergence

$$
\begin{equation*}
\sqrt{q_{2}\left\|z^{*}-k_{n} z^{*}\right\|}\left(\bar{Q}_{r}\right) \leqslant\left\|z_{n}-z^{*}\right\|_{\widetilde{c}\left(\bar{Q}_{r}\right)} \leqslant q_{23}\left\|z^{*}-k_{n} z^{*}\right\|_{\partial(\bar{Q})} \tag{25}
\end{equation*}
$$

is valid where q_{22}, q_{23} are constant.
From interpolation theorem [4] we derive $z^{*}-k_{n} z^{*} \|\left(\overline{q_{-}}\right) \leqslant E_{n}\left(z^{*}(x, t)\right)\left(q_{24}+q_{25} l_{n} n\right)$, where $E_{n}\left(z^{\prime \prime}(x, t)\right)= \pm u \rho, E_{n}^{x}\left(z^{*}(x, t)\right), \quad E_{n}^{x}\left(z^{*}(x, t)\right)$ is the best uniform approximation of the function $Z^{*}(x, t)$ by the trigonometric polynomials of order not exceeding n in terms of variable x for fixed $t, t \in[0, T] ; q_{2 s}, q_{25}-$ are absolute constants.

To each solution $Z_{n}(x, t)$ of problem (38) there corresponds a solution $\mathrm{U}_{\mathrm{n}}(\mathrm{x}, \mathrm{t})$ of problem (30), (31) in view of estimate (35)

$$
\left\|u_{n}-u^{*}\right\|_{A_{1+\delta}}\left(\bar{\phi}_{r}\right) \leqslant q_{21}\left\|z_{n}-z^{*}\right\| q_{(}\left(\bar{q}_{r}\right) q_{2+1} q_{23}\left\|z^{*}-k_{n} q^{*}\right\| \tilde{c}\left(\bar{q}_{r}\right)
$$

Consequently the following theorem is valid:

Theorem 3. When all the functions of this section are satisfied numbers n_{1}, σ_{4}, are found such that when $n \geqslant n_{4}$ there exist unique approximate solutions $U_{n}(x, t)$, in sphere $\left\|u-u^{*}\right\|_{A_{1+\delta}\left(\bar{\psi}_{r}\right)} \leqslant q_{x} \sigma_{4}$ and the estimates

$$
\begin{aligned}
& \left\|u_{n}-u^{*}\right\|_{H_{1}, 5}\left(\bar{q}_{T} \leqslant q_{21} q_{2 t} E_{n}\left(\left(\frac{\partial}{\partial t}-\alpha\right) u^{*}(x, t)\right)\left(q_{24}+q_{25} \ln n\right)\right. \text {, } \\
& q_{n 2} \#\left(\frac{\partial}{\partial t}-L\right) u^{n}-K_{n}\left(\frac{\partial}{\partial t}-L\right) u^{*}\| \|_{\bar{c}\left(\bar{L}_{\tau}\right)}\left\|\left(\frac{\partial}{\partial t}-L\right) u^{*}-\left(\frac{\partial}{\partial t}-L\right) u_{n}\right\|_{\bar{c}\left(\bar{v}_{r}\right)} \\
& \leqslant q_{n j}\left\|\left(\frac{\partial}{\partial t}-L\right) u^{*}-k_{n}\left(\frac{\partial}{\partial t}-L\right) u^{*}\right\| \widetilde{c}_{\left(\bar{z}_{T}\right)} \leqslant \\
& 4 q_{20} E_{n}\left(\left(\frac{\partial}{\partial t}-L\right) u^{*}(x, t)\right)\left(q_{2 s}+q_{2 s} e_{11} n\right) \text {. }
\end{aligned}
$$

are satisfied.
Note 5. If the function $\frac{\partial^{2}}{\partial x^{\prime}}\left[\left(\frac{\partial}{\partial t}-\alpha\right) u^{*}(x, t)\right], s=1,2, \ldots$, $\frac{\partial u^{*}(x, t)}{\partial t}-L u^{*}(x, t)$ has continuous derivative condition with index $\alpha, 0<\alpha \leqslant 1$, uniform with respect to t, then according to the Jackson theorem [4] $E_{n}\left(\frac{\partial u^{*}}{\partial t}(x, t)-L u^{*}(x, t)\right) \leqslant q_{13} q_{26} \frac{(s+1)^{j+1}}{(p+1)!} \frac{2^{\alpha}}{\left(n-s^{2}\right)^{\alpha} n^{j}}$, where q_{26} is the Holder constant of the function $\frac{\partial^{5}}{\partial x^{*}}\left[\left(\frac{\partial}{\partial z}-\ell\right) u^{*}(x, t)\right]$.

Note 6. If $x \in[a, b]$, the results of this section remain unchanged after linear substitution of variables $y=\frac{\pi}{8-a}(x-a)$.
4. Collocation method for nonstationary Navier-Stokes equation system for dynamic viscosity of incompressible fluid.

We shall examine the following boundary problem in the range $\mathrm{Q}_{\mathrm{T}}=$

$$
=((x, t): a<\pi<b, \quad 0<t \leqslant T)
$$

where

$$
\begin{align*}
& \vec{i}(x, t)=\left(v_{y}(x, t), x_{y}(x, t), z_{z}(x, t)\right), \text { grad } p(x, t)= \tag{39}\\
& =\left(\frac{\partial p}{\partial x}(x, t), 0,0\right), \vec{f}(x, t)=\left(f_{x}(x, t), f_{y}(x, t), f_{z}(x, t),\right. \tag{40}\\
& \frac{\partial z_{x}}{\partial x}(x, t)=0, \quad(x, t) \in p_{r}, \tag{41}\\
& \vec{z}(a, t)=\vec{i}(b, t)=(0,0,0), \quad t \in[0, r], \tag{42}\\
& \\
& z(x, 0)=(0,0,0), \quad x \in(a, b)
\end{align*}
$$

It follows from relation (40) and (41) that $\boldsymbol{z}_{\mathrm{r}}(\boldsymbol{x}, \mathrm{t}) \equiv 0$. Systems (39), (42) are broken down into independent equations for determining the functions deg $p(x, t), z_{y}(x, t), \frac{2}{z}(x, t)$.
We will assume that the functions $f_{y}(x, t), f_{7}(x, t)$ are Holder-continuous 127 with $\delta, 0<\delta \leqslant 1$, in closed range \bar{Q}_{T}. Furthermore, $f_{y}(a, t)=f_{y}(b, t)=$ $=f_{2}(a, t)=f_{z}(b, t)=0$ when $t \in[0, T]$.

The approximate solution $z_{y}^{(n)}(x, t), v_{z}^{(n)}(x, t)$ is sought in the form

$$
\begin{aligned}
& z_{y}^{(n)}(x, t)=\sum_{x=1}^{n} \lambda_{n n}(t) \sin k \pi \frac{(x-a)}{b-a} \\
& z_{z}^{(n n}(x, t)=\sum_{\pi=1}^{n} \tau_{n n}(t) \cdot \sin k \pi \frac{(x-a)}{\delta-a}
\end{aligned}
$$

The unknown functions $\lambda_{\kappa n}(t), z_{\kappa n}(t), k=1, \ldots, n$, are determined from the condition that equation (39) is satisfied in the given system of points $x_{r n} \in[a, \mathcal{B}]$, i.e., from the system of 2 n first-order differential equations. We will assume $x_{k n}=\frac{2 \pi(b-a)}{2 n+1}-a, k=1, \ldots, n$

There exists the unique solution $z_{y}^{*}(x, t), z_{z}^{*}(x, t)$ of problem (39)-(42) in view of the assumptions relative to the functions $f_{y}(x, t), f_{z}(x, t)(t)$.

Using the results of the proceding section we arrive at the following theorem:

Theorem 4. Let the functions $f_{y}(x, t), f_{z}(x, t)$. satisfy the state of this condition.

Then for sufficiently large n there exist unique approximate solutions

$$
\left.z_{y}^{(n)}(x, t), z_{2}^{(n)}(x, t) \text { and } \eta z_{y}^{(n)}-z_{y}^{*} \|_{A_{1+\delta}} \rightarrow \bar{\phi}_{r}\right),\left\|z_{2}^{(n)}-z_{2}^{*}\right\|_{A_{1}+\delta} \vec{\varphi}_{r} \overline{(}^{0} \text { for } n \rightarrow+\infty \text {. }
$$

The rate of convergence is characterized by the inequalities

$$
\begin{aligned}
& \left\|\eta_{y}^{(n)}-z_{y}^{*}\right\|_{H_{1}+\delta}\left(\bar{Q}_{T}\right) \\
& \| q_{27} q_{28} \frac{\left(q_{24}+q_{25} \ln n\right)}{n^{\delta}}, \\
& \left\|z_{z}^{(m)} z_{z}^{*}\right\|_{H_{1+\delta}}\left(\bar{\phi}_{T}\right)
\end{aligned}
$$

Here q_{27}, q_{29} are the Holder constants of the functions $f_{y}(x, t), f_{2}(x, t)$ respectively, and q_{28}, q_{30} are absolute constants. The bounds \#u\|$\tilde{H}_{1+\delta}\left(\bar{Q}_{r}\right)^{, ~\|u\|} \widetilde{C}_{\left(\bar{Q}_{r}\right)}$ are defined in Section 3 .

The author greatfully acknoledges the assistance of G. I. Petrov, under whose supervision this work was done.

REFERENCES

1. Krasnolel'skiy, M. A., G. M. Vaynikko, P. P. Zabreyko, Ya. B. Rutitski, V. Ya. Stetsenko, Priblizhennoye Resheniye Operatornykh Uranvneniy, [Approximate Solution of Operator Equation], Moscow, 'Nauka" Press 1969
2. Koshelev, A. I., UMN Vol. 13, No. 4, 1958
3. Ladyzhenskaya, O. A., N. N. Ural'tseva, Lineynyye i Kvazilineynyye

Uravneniya Ellipticheskogo Tipa, [Linear and Quasilinear Elliptical Equations], Moscow, 'Nauka" Press, 1964
4. Natansos, I. P., Konstruktivnaya Teoriya Funktsiy, [Constructive Theory of Functions], Moscow-Leningrad, "Gostekhizdat" Press, 1949
5. Ladyzhenskaya, 0. A., Matematicheskaye Voprosy Dinamiki Vyazkoy Neszhimayemoy Zhidkosti, Mathmatical Problems of Dynamics of Viscous Incompressible Fluid], Moscow, '"Nauka" Press, 1970
6. Fridman, A., Uravneniya s Chastnymi Proizvodnymi Parabolicheskogo Tipa, [Equations with Partial Derivatives of the Parabolic Type], Moscow, "Mir" Press, 1968

Translated for the National Aeronautics and Space Administration under contract No. NASw-2037 by Techtran Corporation, P. O. Box 729, Glen Burnie, Maryland 21061

[^0]: *Numbers in the amrgin indicate pagination in the foreign text.

